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Abstract

An overview of liquid-vapor nucleation is given. As is
demonstrated, a reasonably good qualitative understanding exists
of nucleation and incipient boiling, but a general quantitative
description is still lacking.

The result of thermodynamic equilibrium across curved
liquid-vapor interfaces is presented. The extension of this to
include the interaction with idealizations of surface cavities is
made to demonstrate how superheat requirements for nucleation
will be affected by surface roughness, flow velocity and buoy-
ancy. A successful description of the nucleate boiling process
must include a quantitative understanding of nucleation.

Experimental measurements involving high liquid superheats
and nucleation delay times are presented to show examples of
homogeneous nucleation. Examples of nucleation and boiling on
smooth glass substrates and on metal surfaces with various sur-

face roughnesses are presented, with fluids including H20, Freon

113, LN and LH3, at a/g = 1 and a/g = 0.
An appropriate physical description or characterization of
heating surfaces for nucleation purposes is still lacking.
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Nucleation
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Classifications
Homogeneous
Pure Substance < (within bulk)

Heterogeneous
(on container walls)

Homogeneous
Mixtures (vapor phase out of solution)

Heterogeneous
(gas trapped in container
walls)

Empirical Categories -- Boiling Points

Cryogenic
“Normal”
Liquid Metals
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In an attempt to incorporate the influence, on nucleation time, of
system variables such as properties and microgeometry of the heated
surface and convection effects, a *nucleation factor” is introduced
in the equations of the homogeneous nucleation theory, defined by

F = (Ahet/Ahom) (1)

Anet is the work required to activate a nucleation site in a heteroge-
neous circumstance. The variation in F then corresponds to a boiling
inception temperature Tp ranging from T'ssr to Thom.

For a liquid at a pressure P, and a superheat temperature T', which
produces a “normal” saturation pressure P, (for a vapor bubble r =
=), for thermodynamic equilibrium the critical spherical bubble size
re is given by

P, 20

L=

Pt rcpt’

The only assumption in equation (2) is that the system state is far
enough from the thermodynamic critical state so that v, >» v,. A
further product of this assumption is that P, = P,, the vapor pressure
within the bubble. For nucleation to occur the bubble formed must
exceed the critical bubble size given by equation (2) by at least one
molecule. The expression of Fisher [11] for the homogeneous nucle-
ation rate of bubbles of critical size, neglecting the term for the free
energy of activation for the motion of an individual molecule of liquid
past its neighbors into or away from the bubble surface, is given by

(2)

J:?_k—-T.‘e"’(Ahnm/kT) (3)
h
where
4
Ahom = g'trarcz (4)

Nucleation will occur when a bubble of critical size forms per unit
volume in a reasonable time, say 7 s. This 7 will be termed the nu-
cleation time, and neglects the time required to achieve a steady state
of embryo distribution in any transient process. In equation (3) then,
J « 1/7, and for our present purposes the proportionality will be taken

as an equality. For the heterogeneous nucleation case, replacing Apom
in equation (3) by Ape of equation (1), with equations (2, 4) and the
Clausius-Clapyron equation, and v, >» v, the resulting expression
relates the nucleation time 7, the nucleation factor F, and the su-
perheated liquid temperature T

/ =
167 a3F v 1

nkTTt +1 -1

T -1, Pev,
= ={1- In
T, ANIT=T, P¢23kT In

5
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Table 2

Comparison of Incipicent Boiling Points

(8T )

”2
[Nrf'at:

2 |

2
Calculated 9.4

Measured

Polished S.S. 4.6
600 Grit S.S. . 2.3
Polished Cu 9.1

AP kP,
AII' N Tnnt

Combining, equations (1) and (2), the minimum vapor superheat,
necessary for the hemispherical vapor bubble to grow is

20'7'“&
rch/ aP 0

ATaut = Tv — Ty = (3)
Approximating the vapor temperature by the heater surface tem-
perature, and considering that for a given surface the valuc and
distribution of r, are constant, the ratio of the heater surface
superheats necessary for the initial formation of vapor of the two
fluids is given, from equation (3) as

@_Tiut)l\’z _ <UTaut> <0Tnat> (4)

(AT wut)H, h1oPo/ Ny hyoPo/ 1y .
The calculated quantity is listed in Table 2 with the measured
values from Fig. 10. The comparison is reasonably good,

especially for the polished copper surface.
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PEAKER: HER ERTE, JR/UNIVERSITY OF MICHIGAN
Robert Hendricks/Lewis Research Center:
In your first set of slides, where you showed a rapid drop in pressure, that rapid
drop of pressure is mimicked by the rapid drop in temperature when you did
your boiling study. We have done quite a bit on that and found that the
temperature beneath the growing bubble drops extraordinary rapidly and recovers
in much the same way as the pressure does.
Merte:
Are you talking about the pipe venting problem?
Hendricks:
Yes, that’s right.
Merte:
The temperature will not drop until vapor is formed.
Hendricks:
Your temperature didn’t drop; your pressure dropped. In our case when we did
the nucleate boiling studies, our temperature dropped, but our pressure was
constant.
Merte:
The temperature dropped as soon as the vapor bubbles were formed.
Hendricks:
I see; you are in equilibrium.
Merte:
We had thermocouples inserted in the liquid too, and you could see that the
vapor formed around the thermocouples eventually. The temperature did indeed
drop, because once the bubbles are formed, of course, it is the consumption of
the super heat by the growing vapor that drops the temperature of the liquid,
which is, I think, what you are referring to.

Hendricks:

Right! When you got your sonic velocities from the experimentation, did you
compare that with the equation of state, Martin-Powell, or something like that?

Merte:
Yes.
Hendricks:

Was the comparison good?
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Merte:

Yes! Now, this is for the liquid state only; details of this comparison can be
found in the cited reference.

Hendricks:

I thought that Hsu’s criteria had dual roots for radii?

Merte:

I was looking at the more general problem. He dealt with the specific
description of the transient temperature distribution in the boundary layer. He
took a given thickness and then treated it as a semi-infinite solid where you
ultimately had a step change in the surface temperature. Pete Griffith did work
treating the boundary layer as a semi-infinite solid. Rosenhow and Furgel did

some work with forced convection using a heat transfer coefficient to describe
the temperature gradient at the surface.

Hendricks:

What was the reduced temperature and pressure of the Freon versus water when
you did the transient heating?

Merte:
I don’t remember that. Do you mean relative to the critical state?
Hendricks:

Yes, because they won’t compare unless they are on the same reduced
temperature and pressure basis.

Merte:

We did it in terms of the homogeneous superheat; that is divided by the
homogeneous superheat.

Hendricks:

I agree, but unless the thermodynamic states are corresponding states, they
won't agree.

Merte:
I don’t remember what they were.
Hendricks:

We generated a great deal of data with a ribbon heater and liquid hydrogen. I
think that the data would probably fall in the center of your curve, but those
were for ribbon heaters which may be a little different from the wires. I would
like to suggest, for your Q versus Delta T plot, showing the effect of
roughness; the initiation of nucleation is of the right order, but when you go up
into the high fluxes, the functional relationship crosses back over again, because
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you are probably blanketing the surface with vapor, which is equivalent to giving
you a higher resistance.

Merte:

Obviously, there is going to be some point when we get to high enough heat
fluxes where you get interference between the nucleating sites.

Shigeo Nakanishi/Analex Corporation--Lewis Research Center:

The heating rate appears to influence the level of super heat that the liquid can
sustain before incipient boiling begins. Is that correct?

Merte:
Yes, that is correct.
Nakanishi:

In that event, since the available zero-g test time is very short, could all the
results tend to be biased toward the high heating rate? If you could compare
the very slow heating rate results with a sustained or long term zero-g case,
you could possibly have a difference between the short-term and the long term
zero-g tests?

Merte:

That was what moved the points on the curve. For example, with the Freon
113, you noticed there was a line, and the data had covered the various points
of the line because we varied the heating rate. I agree with what you are
implying there; the nucleation point is indeed a function of more than just the
surface temperature. It has got to be a function of the temperature distribution
in the liquid boundary layer. That is why we are in the process of setting up to
make some measurements of the temperature gradient which weren’t made
previously. I think it is a combination of the temperature distribution in the
liquid near the surface and the surface temperature together that govern when
this nucleation takes place.
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